
8 The Delphi Magazine Issue 63

Drag And Dock
by Brian Long

Docking support was intro-
duced into the Delphi IDE in

Delphi 4. As is often the case when
a major new piece of functionality
is added to the IDE, it was also
made available in the VCL. Indeed,
Inprise added docking support to
the VCL in order to make it
available in the IDE.

An unfortunate aspect of this
new docking support is that as you
move almost any window around
in the IDE, it tries to dock with
other windows under the mouse.
This can get very irritating
(although holding the Ctrl key
down as you drag windows around
will stop the problem) and has the
side effect of putting people off

adding docking support to their
own applications. A rumour sug-
gests that customer demand for a
global, persistent option to disable
IDE docking may be answered in
the next version of Delphi.

Another issue with docking is
that the sample docking project
(found in Delphi’s Demos\Docking
directory) is overly complex. It is
designed to show how to perform
advanced docking, as done by the
IDE, where one window can be
docked into another window in a
variety of ways: horizontally, verti-
cally or as a tabbed page. Figure 1
shows the Delphi editor with a
number of debugging windows
docked in it. Some are docked in a

tabbed area at the bottom left and
two are docked above each other
to the right of the tabbed area.

This article will look at the VCL
docking support, introducing it
step by step hopefully to make it
clearer how to implement docking
support in your own programs.
The coverage will include as much
of the multitude of properties,
methods and events exposed by
the VCL as space permits.

The VCL docking support was
built on top of the original VCL
drag and drop support. Conse-
quently, you might find it useful to
have a read of my earlier article
Dragging And Dropping Part 1: VCL
from Issue 56 (April 2000).

Simple Undocking
The typical docking requirement is
to have some control like a toolbar
which can be docked on a form or
floating in a window of its own.
Fortunately, such straightforward
docking is very simple.

In a fresh application, drop a
TToolBar on the form and set the
normal properties as you like (for
me this means remove ebTop from
EdgeBorders), then add a few tool
buttons to it from the right-click
menu.

To allow the toolbar to be ripped
off the form, or undocked as we
more commonly say, the simplest
approach is to set the DragMode
property to dmAutomatic and
DragKind to dkDock.

The DragMode setting means that
some kind of dragging operation
will start automatically when the
mouse is clicked down and moved.
The DragKind setting dictates
whether the operation will be a
drag and drop operation or a drag
and dock operation (we choose
the latter).

Run the program (on the disk as
DockedControls.dpr) and, sure
enough, the toolbar can be
undocked from the form and left
floating on the screen (as shown in
Figure 2).

As the toolbar is dragged from
the form, a rectangle is drawn to
indicate where it would be left if
you released the mouse button at
any given point (Figure 3). This
rectangle is called the dock image.

➤ Figure 1: The editor with various windows docked into it.

➤ Figure 2: An undocked toolbar.

➤ Figure 3: The dock image being dragged around the screen.

10 The Delphi Magazine Issue 63

However, all it takes is the
merest mouse click to start the
undocking operation and you are
left with a floating toolbar. This is
part of the problem of the simple
solution: the simplest solution is
the least flexible.

We really need to allow the
toolbar to be clicked without
becoming undocked. But that’s
just one of the problems. Try dock-
ing the toolbar back on the form
and you won’t succeed. Clearly we
need to do more to get a realistic
docking implementation.

Also, see what happens if you
close the floating toolbar form.
Unsurprisingly, it closes, but this
has the effect of removing the
toolbar from the application’s user
interface. Closing the floating
window does not dock the toolbar
back again, so we also need to pay
attention to that. Anyway, one
thing at a time...

Firstly, let’s see how we can start
the undocking operation in a more
usable manner. The problem is
caused by automatic drag opera-
tions starting immediately upon a
left button click, rather than wait-
ing until the mouse has moved a
few pixels. To rectify this, set the
toolbar’s DragMode property back
to dmManual, and make an
OnMouseDown event handler for it
that looks like Listing 1.

This makes a drag operation (the
operation kind is still dictated by
DragKind) begin when the left
mouse button is pressed, but the
False parameter ensures the drag
operation only starts if the mouse

is moved 5 pixels (the value of the
global Mouse object’s DragThreshold
property).

BeginDrag takes an optional
second parameter which specifies
the number of pixels the mouse
must be moved before the drag
operation commences, just in case
you don’t like the default value of 5.
You can also change this threshold
throughout an application by
changing the value of Mouse.Drag-
Threshold.

Whilst calling BeginDrag is a valid
solution for an individual control, a
better way of getting deferred
undocking throughout the applica-
tion would be to leave everything
as it was (DragMode as dmAutomatic)
and set Mouse.DragImmediate to
False in the form’s OnCreate event
handler (it defaults to True).

Simple Docking
To enable a form (or any other
TWinControl derivative) to support
controls being docked in it,
thereby being known as a dock site,
you must set its DockSite property

to True. This allows (by default)
any undocked control to be
docked in it. Now we have a
scheme for acceptable docking/
undocking.

First, set Mouse.DragImmediate to
False in the main form’s OnCreate
event handler (or in the project
source, noting that Mouse is
declared in the Controls unit).

Then, controls that should be
dockable need their DragKindprop-
erty set to dkDock and DragMode set
to dmAutomatic.

Lastly, items that should be
dock sites need their DockSite
property set to True.

The only real issue with setting
the form’s DockSite property to
True is that now the toolbar (and
any other control) can be docked
anywhere in the form. When the
toolbar is undocked, and becomes
a floating window, its Align prop-
erty is set to alNone (whereas it
started as alTop).

Fortunately, controls have
OnStartDock and OnEndDock events.
OnStartDock is triggered when any
docking operation (undocking or
docking) starts, and OnEndDock is
triggered when the operation
ends. You can make a toolbar
OnEndDock event handler to reset its
Align property when it is docked
back in a form, as in Listing 2. The
test program as it stands can be
found in DockedControls2.dpr.

Permission To Dock
We can now start to think bigger.
Maybe, for example, you have a
dock site, such as a form, that is

procedure TForm1.ToolBar1EndDock(Sender, Target: TObject; X, Y: Integer);
begin
//Make sure toolbar's Align property is reset when it gets docked in the form
if (Sender is TToolBar) and (Target is TCustomForm) then
TToolBar(Sender).Align := alTop

end;

➤ Listing 1: A non-immediate undocking operation.

procedure TForm1.ToolBar1MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
if Button = mbLeft then
(Sender as TControl).BeginDrag(False)

end;

➤ Listing 2: Ensuring the toolbar
stays aligned to the top of the
form.

procedure TForm1.FormDockOver(Sender: TObject; Source: TDragDockObject;
X, Y: Integer; State: TDragState; var Accept: Boolean);

var
ARect: TRect;

begin
Accept := Source.Control is TToolBar;
if not Accept then begin
//Make mouse position top left of dock rectangle
ARect.TopLeft := (Sender as TWinControl).ClientToScreen(Point(X, Y));
//Bottom right is based on dragged control's size
ARect.BottomRight := TWinControl(Sender).ClientToScreen(
Point(X + Source.Control.Width, Y + Source.Control.Height));

//Control was dragged with mouse somewhere other than its top left
//so use MouseDeltaX/Y fractions to work out the X and Y offset
OffsetRect(ARect,
-Trunc(Source.Control.Width * Source.MouseDeltaX),
-Trunc(Source.Control.Height * Source.MouseDeltaY));

//Reset dock image to look as though docking will not occur
//(which it won't) as we rejected the control
Source.DockRect := ARect;

end
end;

➤ Listing 3: Manually resetting the docking rectangle
for a rejected control.

12 The Delphi Magazine Issue 63

only intended to host toolbars and
nothing else. Drag and drop con-
noisseurs familiar with OnDragOver
and OnDragDrop who have browsed
the available events will have seen
OnDockOver and OnDockDrop and will
probably be thinking that the
Accept var parameter in OnDockOver
is the answer.

A dock site’s OnDockOver event is
triggered as a control (which has
been set up for docking) is dragged
across it. OnDockDrop is triggered
when such a control is dropped on
a dock site.

Well, the OnDockOver event’s
Accept parameter will indeed allow
any specified control to be
accepted or rejected but, as you
drag the control over the dock site,
the dock image will automatically
snap to its perimeter, suggesting
the control can be docked there
even though it will be rejected. To
remedy this, you would need to
modify the docking rectangle (a
field of one of the event handler
parameters) for all rejected
controls, which would be tedious.

Listing 3 shows some code that
seems to do the job. As you can
see, it’s a bit of a chore, particu-
larly when you find that the
MouseDeltaY field of the TDragDock-
Object object is wrongly imple-
mented in Delphi 4 and 5, and
returns the same value as Mouse-
DeltaX (this has been reported and
will be fixed in Delphi 6).

Instead, a better approach is to
use another event handler OnGet-
SiteInfo, which is called before
OnDockOver. This event has a var
parameter called CanDock, which
does the job as you would expect,
as in Listing 4. The test program
(now DockedControls3.dpr) has a
dockable image component that

defaults to being a child
of a panel. If you try and
dock it into the form, it
will not succeed, but you
can dock it back in the
panel.

Note that when you do
dock it back in the panel,

the image component has a grabber
(a pair of vertical lines) and a close
button added above it (see Figure
4). The grabber allows the image
component to be undocked easily,
and is designed to make it obvious
that the image supports docking.

These UI widgets are automati-
cally added upon docking thanks
to the panel’s UseDockManager prop-
erty being True. The form also has
this property, but it defaults to
False, so these adornments aren’t
automatically given to controls
that dock to the form. For the time
being, a discussion of the dock
manager, as enabled by the
UseDockManager property, will be
left to one side, but rest assured we
will come back to it later.

Listing 4 also shows the
InfluenceRect varparameter of the
OnGetSiteInfo event. This TRect
indicates where the mouse can be
released in order for the dragged
control to be docked. It defaults to
being the bounding rectangle of
the dock site expanded by 10 pixels
in each direction (this value is
hardcoded in the Controls unit
method that calls OnGetSiteInfo,
in a constant which is called
DefExpandoRect).

The implication of this is that, as
you drag a control across to a
possible dock site, you are able to
release the mouse whilst it is 10
pixels outside the dock site and
still have the control docked. If you
wanted to be choosier about where
the mouse should be, you can
adjust the rectangle in the event
handler.

Control Bars And Docking
At this point, before moving on to
more involved areas of docking,
some comments should be made
about the TControlBar. This com-
ponent is found on the Additional
page of the Component Palette,
and acts a bit like a purely Delphi-
written simplified version of the
TCoolBar Win32 common control
component (from the Win32 page).

The control bar component is
really designed as a handy dock
site for toolbars. Any component
dropped on a control bar at design-
time is automatically drawn in a
draggable band. Each band has a
grabber on the left that is used to
drag the bands around. The Delphi
IDE main window uses a control
bar to house all its toolbars, the
menu and the Component Palette.

TControlBar initialises its Dock-
Site property to True, and has an
AutoDrag property that dictates
whether controls can be undocked
simply by dragging them off the
control bar with their grabbers
(also True by default). By placing
toolbars in a control bar, you can
forget about setting the DragMode
property or setting Mouse.Drag-
Immediate, although you must still
set DragKind.

The test program is now in
DockedControls4.dpr and has a
control bar on the form with the
toolbar in it. DragKind is the only
docking-related property that is
set in the toolbar, and all the dock-
ing-related event handlers have
been removed. The OnCreate event
handler is all that remains.

Closing Undocked Controls
Earlier, I highlighted the issue of
closing a floating control (a control
in an undocked state). The actual
effect of closing the floating
window is that the control’s Visi-
ble property is set to False. So to
rectify the problem, you need to

procedure TForm1.Panel1GetSiteInfo(Sender: TObject; DockClient: TControl;
var InfluenceRect: TRect; MousePos: TPoint; var CanDock: Boolean);

begin
CanDock := DockClient is TToolBar

end;

➤ Listing 4: Rejecting a
control more concisely
than in Listing 3.

➤ Figure 4: The image
component with a
grabber added.

November 2000 The Delphi Magazine 13

have some way on the form of
setting Visible back to True.

The Delphi IDE has the same
issue with its toolbars. If you
undock any of them and then close
them, you need some way of
making them visible. Right clicking
on any of the existing IDE toolbars
or the control bar brings up a
popup menu with an entry for each
toolbar. All visible toolbars have a
checkmark next to their corre-
sponding menu item. Selecting any
of these menu items toggles the
checkmark, and also the toolbar’s
Visible property.

To replicate this behaviour, the
test project (DockedControls5
.dpr) has a menu on it and an
action list. The action list defines
an action whose job is to toggle the
state of the toolbar’s visibility. The
action’s event handlers are shown
in Listing 5 and you can see a menu
item that is connected to the action
in Figure 5.

Whilst this approach works just
fine, it is not the only option for
keeping a floating control accessi-
ble. We will come back to this
subject later in the article.

Programmatic Docking
Sometimes you will want to take
control of the docking/undocking
operation in code, rather than
leaving it to the user. Controls
have ManualDock and ManualFloat
methods to help out here.

ManualDock takes a dock site to
dock the control into. ManualFloat
floats a control and takes a screen
rectangle in which the floating con-
trol will be displayed. There is also
a read-only Floating property to
tell you whether the control is cur-
rently docked in a control or in a
floating window.

Listing 6 shows some code from
a button in DockedControls6.dpr.
If the toolbar is already floating it is
docked into the control bar. If it is
not floating, it is told to float at the
top left of the main form. Notice the
UndockWidth and UndockHeight
properties that record how wide
the control was the last time it was
floating. Also notice the comment
shows that passing nil to
ManualDock is another way to float
the control.

This current version of the pro-
ject also manually docks the image
component in the panel in the
form’s OnCreate event handler to
force the grabber and close button
to appear immediately.

Manufacturing Dock Zones
It is common for controls such as
toolbars to be docked at the edge
of the form. The normal starting
place would be the top of the form,
but you might want to support
docking it to the left, right and
bottom of the form, but not
anywhere else. This is achieved in
Delphi by aligning some ‘hidden’
dock site controls to the left, top,

right and bottom of
the form.

For example, four
panels would work
as dock sites. Drop
them on the form, set
BevelOuter to bvNone,
set Align appropri-

ately and both the DockSite and
AutoSize properties to True. This
makes the panels effectively disap-
pear as they have no child controls
to accommodate. The top and
bottom aligned panels attain a
zero height, but have a width that
matches the form’s client area.
The left and right aligned panels
have a zero width, but have a
height that matches the form’s
client height. These panels will
now be referred to as dock panels.

You might think that this would
make it difficult to dock anything in
the dock panels, but remember the
point made earlier. The default
influence rectangle is the dock
site’s bounding rectangle exp-
anded by 10 pixels in all directions.
Therefore, as any toolbar is
dragged within 10 pixels of the
form’s border (and therefore
within 10 pixels of one of the dock
panels), it can be successfully
docked in the panel.

DockedControls7.dpr has these
changes made, along with a few
more. Firstly, the form’s OnCreate
event handler manually docks the
toolbar in the top panel
(TopDockPanel).

Also, all the dock panels share a
couple of event handlers. Their
OnGetSiteInfo event handler
ensures only toolbars can be
docked in them. Their OnDockDrop
event handler sets the toolbar’s
Align property appropriately
depending on which dock panel
it is dropped (in fact, the

procedure TForm1.actToggleToolbarExecute(Sender: TObject);
begin
ToolBar1.Visible := not (Sender as TAction).Checked

end;
procedure TForm1.actToggleToolbarUpdate(Sender: TObject);
begin
(Sender as TAction).Checked := ToolBar1.Visible

end;

➤ Listing 5: An action to keep toolbars accessible.

procedure TForm1.btnToggleFloatClick(Sender: TObject);
begin
if ToolBar1.Floating then
ToolBar1.ManualDock(ControlBar1)

else
//ToolBar1.ManualDock(nil)
ToolBar1.ManualFloat(Rect(Left, Top, Left+ToolBar1.UndockWidth,
Top+ToolBar1.UndockHeight))

end;

➤ Listing 6: Manually docking or
undocking a control.

➤ Figure 5: Ensuring
the toolbar can
be retrieved
if closed.

14 The Delphi Magazine Issue 63

panel’s Align property is copied to
the toolbar). This means that when
the toolbar is docked at the left or
right side of the form it lays out its
buttons vertically.

Whilst the program works, it has
an aesthetic downside. When drag-
ging the toolbar near a panel, the
dock image snaps to the bound-
aries of the panel in question.
Unfortunately, the panel either has
no height (in the case of the top
and bottom dock panels) or no
width (left and right panels) and so
the dock image just looks like a
thick grey line.

What is needed is for it to sug-
gest the outline of where the
toolbar would be if it were docked.
To do this we need code in each
panel’s OnDockOver event handler
to modify the TRect passed as a
field of the TDragDockObject object
parameter.

DockedControls8.dpr has been
modified to include this sort of
code (see Listing 7). The code first
works out how much the dock
image will need to be extended by,
one way or another. This is either
the height of a horizontal toolbar
or the width of a vertical one.
Depending which dock panel is
being dragged over (or near), the
dock image is extended in an
appropriate way.

You could leave it at that, but
there is still an imperfection.
Because the dock panel currently
occupied by the toolbar has a cer-
tain height (or width), it means
that the two dock panels aligned to

each side of it do not stretch along
the entire sides of the form. For
example, when the form starts, the
left and right dock panels stretch
from the bottom of the form’s
client area to the bottom of the top
dock panel housing the toolbar. If
we leave it like this, the dock image
will look a little small as you drag
the toolbar around the form.

The remainder of the event han-
dler caters for this by ensuring that
the dock image in question defi-
nitely goes from top to bottom or
left side to right side of the form’s
client area.

The form now appears to have a
toolbar that can be docked in one
of four dock zones. Figure 6 shows
what happens when you drag the
toolbar near the right hand dock
zone. Notice the dock image
stretches from the bottom to the
top of the form’s client area, over-
lapping the toolbar and current
dock panel.

Custom Docking/Undocking
As a component user, there are
three useful events that can be
used to customise the behaviour
exhibited when controls are
dragged over, docked in and
undocked from a control. These
are OnDockOver, OnDockDrop and
OnUnDock.

Incidentally, the OnUnDock event
is only triggered if the control is
considered to be docked in a host
when undocked. For example, if a
toolbar is placed in a control bar at
design-time and undocked at
runtime, the OnUnDock event will not
trigger as it will not be considered
to be docked to begin with. To

overcome this, add a statement in
the form’s OnCreate event handler
to manually dock the control to the
client in advance (even though it is
already a child control).

These events are useful for
component users; however, for
component writers there are poly-
morphic methods more appropri-
ate for customising this behaviour.
Certainly, each event is called from
such a method (DoDockOver, Dock-
Drop and DoUnDock) but there are
better methods provided.

To customise behaviour when a
control is docked in a TWinControl,
override its DoAddDockClient
method, which is passed the con-
trol and a TRect describing the
region where it was docked as
parameters. To customise behav-
iour when a control is undocked,
override DoRemoveDockClient,
which is passed the control.

TPageControl is an example of a
control that overrides both of
these methods to support special-
ised docking. When a control
is docked on a page control,
it becomes a new page (a

procedure TForm1.DockPanelDockOver(Sender: TObject;
Source: TDragDockObject; X, Y: Integer; State: TDragState;
var Accept: Boolean);

var
DockBar: TToolBar;
InflateSize: Integer;
ARect: TRect;
ClientTL: TPoint;

begin
DockBar := Source.Control as TToolBar;
//Get current height if horizontal or width if vertical
if DockBar.Height > DockBar.Width then
InflateSize := DockBar.Height

else
InflateSize := DockBar.Width;

//Dock rect will be 0 width/height as per panel dimensions
//To make it look realistic, increase rectangle
//to same width/height as toolbar
ARect := Source.DockRect;
case (Sender as TPanel).Align of
alTop: Inc(ARect.Bottom, InflateSize);
alLeft: Inc(ARect.Left, InflateSize);
alBottom: Dec(ARect.Top, InflateSize);
alRight: Dec(ARect.Right, InflateSize);

end;
//Two of the four aligned dock panels will not stretch
//along edge of form client area (because of the currently
//visible one's size). Make sure dock rectangles do
ClientTL := Point(0, 0);
ClientTL := ClientToScreen(ClientTL);
case (Sender as TPanel).Align of
alTop, alBottom:
//Make horizontal panels stretch across form's client
// width
begin
ARect.Left := ClientTL.X;
ARect.Right := ClientTL.X + ClientWidth;

end;
alLeft, alRight:
//Make vertical panels stretch across form's client
// width
begin
ARect.Top := ClientTL.Y;
ARect.Bottom := ClientTL.Y + ClientHeight;

end;
end;
Source.DockRect := ARect

end;

➤ Listing 7: Enlarging a dock
rectangle.

➤ Figure 6: Edge dock zones.

16 The Delphi Magazine Issue 63

new TTabSheet). The control can be
undocked either by dragging it
with the tab or by dragging the
control itself.

DockedControls9.dpr now starts
off with the image component man-
ually docked in the page control
(see Figure 7). It can be undocked
and left floating and then docked
back in the page control.

The extra code in this version of
the program is minimal (see Listing
8). It makes sure that the tab that
contains the docked image has a
caption, and ensures that toolbar
controls cannot be docked in the
page control.

More Customisation
In addition to the events and meth-
ods I’ve already discussed, the VCL

docking architecture has more up
its sleeve for customisation. The
OnStartDock and OnEndDock event
handlers of a control can be used
to set up and free a custom dock
object. This is quite like the custom
drag objects that are managed for
customised drag and drop opera-
tions in OnStartDrag and OnEndDrag
event handlers.

Without our doing anything, the
VCL creates a TDragDockObject
when a dockable control starts
being dragged. This object is
passed to various event handlers,
such as OnDockOver (see Listings 3
and 7) and OnDockDrop (Listing 8).

The behaviour of the dock
operation can be customised
by inheriting a new class from
TDragDockObject and assigning an

instance of the class to the
DragObject parameter of the
OnStartDock event handler. You
must also ensure that you free this
custom dock object in the
OnEndDock event handler, despite
the online help suggesting this is
not necessary.

This custom drag object can do
various things such as alter the
dock image drawn whilst a control
is being dragged around. The
DrawDragDockImage and EraseDrag-
DockImage virtual methods simply
call the same-named methods in
the dragged control by default, to
get the standard rectangle (as in
Figures 3 and 6). Given this infor-
mation, you can also customise
the dock image of any control by
inheriting a new class and overrid-
ing the appropriate methods.

The VCL already has one custom
dock object class defined for use
with dockable toolbars. You might
notice that when you undock an
IDE toolbar there is no dock image
at all. Instead, the toolbar gets
physically dragged around the
screen as the mouse is moved.
This is thanks to the IDE using a
TToolDockObject, defined in the
ToolWin unit, in the toolbar OnSta-
rtDock and OnEndDock handlers.

We can replicate this behaviour
ourselves, but it works best when
the toolbars normally reside in a
control bar. The project
DockedControls10.dpr gets rid of
all the docking panels and associ-
ated code and uses a single control
bar instead, as we did earlier.

The control bar has Align set to
alTop and AutoSize set to True to
make it collapse to zero height

➤ Figure 7: The image docked in
a page control.

procedure TForm1.PageControl1DockDrop(Sender: TObject;
Source: TDragDockObject; X, Y: Integer);

begin
if Source.Control = Image1 then
PageControl1.ActivePage.Caption := 'Athena'

end;
procedure TForm1.PageControl1GetSiteInfo(Sender: TObject;
DockClient: TControl; var InfluenceRect: TRect; MousePos: TPoint;
var CanDock: Boolean);

begin
CanDock := not (DockClient is TToolBar)

end;

type
TForm1 = class(TForm)
...
private
CustomDockObject: TDragDockObject;

end;
...
procedure TForm1.ControlBar1GetSiteInfo(Sender: TObject; DockClient: TControl;
var InfluenceRect: TRect; MousePos: TPoint; var CanDock: Boolean);

begin
CanDock := DockClient is TToolBar; //Only accept toolbars

end;
procedure TForm1.ControlBar1DockDrop(Sender: TObject; Source: TDragDockObject;
X, Y: Integer);

begin
with (Sender as TControlBar) do
BevelEdges := [beLeft, beRight, beTop, beBottom]

end;
procedure TForm1.ControlBar1UnDock(Sender: TObject; Client: TControl;
NewTarget: TWinControl; var Allow: Boolean);

begin
with (Sender as TControlBar) do
// When last control is being undocked,remove bevelled edges
if ControlCount = 1 then
BevelEdges := []

end;
procedure TForm1.ToolBar1StartDock(Sender: TObject;
var DragObject: TDragDockObject);

begin
DragObject := TToolDockObject.Create(ToolBar1);
CustomDockObject := DragObject

end;
procedure TForm1.ToolBar1EndDock(Sender, Target: TObject; X, Y: Integer);
begin
CustomDockObject.Free;
CustomDockObject := nil

end;

➤ Listing 9: Custom toolbar dock objects.

➤ Listing 8: Ensuring the new tab sheet gets a caption and the page
control does not accept toolbars.

November 2000 The Delphi Magazine 17

across the top of the form when the
toolbar is undocked. Its
OnGetSiteInfo event handler
accepts only toolbars. It also has
an OnUnDock event handler that
removes the bevelled edges when
the toolbar is undocked, so as it
collapses, it completely disap-
pears. An OnDockDrop event handler
adds the bevelled edges back when
the toolbar is docked again. As
mentioned before, to ensure the
OnUnDock event handler triggers the
first time the toolbar is undocked,
the form manually docks the
toolbar in the control bar when it is
created.

Now the OnStartDock and OnEnd-
Dock event handlers can be made
for the toolbar. They rely on a
TDragDockObject data field defined
in the form. Listing 9 shows the
code discussed so far. When you
test out this version of the project,
you can see the improvement. As
you drag the toolbar out of the con-
trol bar, the toolbar instantly
undocks and gets dragged around,
rather than showing the usual dock
image rectangle.

Floating Forms
When a control is undocked from
its original parent, we have seen
that it becomes a child of a new
form that is automatically created
(as visible in Figure 2). This form is
normally an instance of class
TCustomDockForm, defined in the
Forms unit, although toolbars
reside in forms of type TToolDock-
Form (from the ToolWin unit).

Any given component knows
what type of form it will reside in
through its public Floating-
DockSiteClass property. This
defaults to TCustomDockFormbut can
be assigned any class inherited
from TWinControl. Again, you can
customise the behaviour of how
controls dock in the floating dock
site class and undock from it by
overriding the DoAddDockClient and
DoRemoveDockClient methods.

Note that controls have a
HostDockSite property that tells
you which windowed control they
are docked in (typically an object
of the type specified in Floating-
DockSiteClass). If the control is not
docked, HostDockSite will be nil.

If the control is docked, HostDock-
Site will be the same as Parent.
HostDockSite can be written to, but
you are advised to call ManualDock
for better results with program-
matic docking.

As an example of a custom float-
ing dock site class, let’s go back to
a problem from earlier on. Recall
that when a floating control is
closed, it is hidden. An action was
used earlier to allow a menu item to
re-show the hidden control.

An alternative solution is to
modify the floating dock site class
so that when it is closed, the con-
trol is automatically docked back
in the control bar. Listing 10 shows
the implementation of the new
class and shows the toolbar’s
FloatingDockSiteClass property
being assigned the new value. This
code can be found in the
DockedControls11.dpr project.

Multiple Docked Clients
Once you start playing with dock-
ing you will see that a lot of thought
went into the design and imple-
mentation. Here’s an example that
might make you think about what
can be done.

Start a fresh project and set the
form’s DockSite property to True,
to allow dockable controls to be
docked in it. Use the OnCreate
event handler from Listing 11 to
create a number of additional
blank, coloured forms that can be
docked into the main form. Each of
these forms has a caption that sug-
gests docking it into the main form.

Figure 8 shows what happens
when you run the program and
dock all the coloured forms in the
main form. Not that impressive as
it stands right now.

The Dock Manager
But if you set the main form’s
UseDockManager property True and
dock the forms, you get behaviour
akin to that demonstrated in the
IDE windows, as shown in Figure 9.
Each docked control (or form in
this case) gets a grabber and close
button to start with. Additionally,
as you drag a control around the
dock site, the dock image snaps to
various positions relative to the
already docked controls, and all

TToolBarDockForm = class(TToolDockForm)
protected
procedure WMClose(var Message: TWMClose);
message WM_CLOSE;

end;
procedure TToolBarDockForm.WMClose(var Message: TWMClose);
begin
//When form is closed, dock control back in old dock site
if (DockClientCount = 1) and (DockClients[0] is TToolBar) then
TToolBar(DockClients[0]).ManualDock(Form1.ControlBar1);

inherited
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
Mouse.DragImmediate := False;
Image1.ManualDock(PageControl1);
ToolBar1.ManualDock(ControlBar1);
ToolBar1.FloatingDockSiteClass := TToolBarDockForm;

end;

procedure TMainForm.FormCreate(Sender: TObject);
const
Colors: array[1..6] of TColor =
(clWhite, clBlack, clBlue, clGreen, clRed, clYellow);

var I: Integer;
begin
for I := Low(Colors) to High(Colors) do
with TForm.CreateNew(Self) do begin
Caption := 'Dock me in the main form';
Color := Colors[I];
DragKind := dkDock;
DragMode := dmAutomatic;
Position := poDefaultPosOnly;
Width := 100;
Height := 100;
Visible := True;

end;
end;

➤ Listing 10: A custom floating dock site class.

➤ Listing 11: Creating multiple
dockable forms.

18 The Delphi Magazine Issue 63

the docked controls are arranged
appropriately based upon the dock
image.

The pattern of docked forms
shown in Figure 9 is an arbitrary
pattern based upon where the
mouse cursor was (and hence
what shape the docking rectangle
was) when each secondary form
was docked in the main form. The
program used to generate Figure 9
can be found on the disk as
MultipleClients.dpr.

Clearly, this UseDockManager
property proves to be quite useful
to know about. It tells the
TWinControl derivative whether to
use a dock manager for dealing
with controls docked in it.

The dock manager’s job is two-
fold. It is responsible for moving
and positioning docked controls
within a dock site (the regions
occupied by the docked controls
are called dock zones), and also for
drawing the grabber and the minia-
ture close button on the docked
control’s frame (visible in Figure 9,
for example).

When UseDockManager is set to
True, the dynamic protected
CreateDockManager function
method is called and the resultant

IDockManager interface reference
is stored in the protected
DockManager property (assuming
that DockManager was nil).
DockManager is also an
IDockManager interface reference
(IDockManager is defined in the

Controls.pas unit).
When any control requires a

dock manager to manage its dock
zones, the CreateDockManager
method uses the DefaultDock-
TreeClass class reference variable,
which by default refers to the
undocumented TDockTree class.

TDockTree is by no means the
only choice for the dock manager.
You can write replacement dock
managers by writing a class that
implements IDockManager (defined
in the Controls unit). Any individ-
ual control can have a custom dock
manager by assigning an instance
of the class to the DockManager
property before setting UseDock-
Manager to True, or by returning an
instance of it from an overriden
CreateDockManager method.

Implementing IDockManager from
scratch would, however, be a tall
order so you could alternatively
inherit from TDockTree and add or
modify behaviour there. If you
assign such a class to Default-
DockTreeClass, you can replace the
dock manager globally throughout
your application.

An example of a customised
dock manager was given in The
Delphi Clinic in Issue 51 (November

1999), in an entry called
Customised Docking. The dock
manager was inherited from and
two methods were customised to
prevent the grabber and close
button being drawn at all. It went
on to explain how you could either
customise one control’s dock man-
ager with this new class, or use it
as the new default dock manager
for the whole application.

The default dock manager is not
without its little problems, though,
as I discovered when testing this
application for a while. For exam-
ple, TDockTree does not always
rearrange the already docked cli-
ents correctly when another client
is docked to it, as you can see in
Figure 10. The windows were
docked in the following order:
green, blue, black and then white
(this fourth one caused the
problem).

This problem has been reported
(it can be reproduced in the Delphi
editor by docking debugger win-
dows into the bottom of the editor
in a similar order), but fortunately
it can be avoided very easily. Any
control that can have multiple con-
trols docked in it (the main form in
this case) should call DockManager.
ResetBounds(True) in the OnDock-
Drop event handler. The updated
project MultipleClients2.dpr on
the disk contains this change.

More Docking Subjects
That pretty much fills the space I
have been allotted for this issue,
but I haven’t exhausted the subject
of VCL docking yet. Things still to
be investigated include custom

➤ Figure 8:
Multiple docked forms.

➤ Figure 9: Multiple forms docked
using a dock manager.

➤ Figure 10: The dock manager going awry. Beware!

November 2000 The Delphi Magazine 19

dock managers which, for exam-
ple, can draw docked clients
differently (see Figure 11 for an
example). Also, the fancy docking
as demonstrated by both the IDE
and Delphi’s docking demo, where
multiple docked clients can reside
in a page control. There is also the
issue of saving information about
docked windows away to a file of
some sort, so that when the pro-
gram restarts, everything can be
restored as it was.

I haven’t researched these
topics yet but, when I do, you can
be sure I will write up my findings
in another article.

Summary
There is a large portion of the VCL
architecture set aside to support
drag and dock in Delphi (and
C++Builder) applications. Much of
this goes unnoticed due to the lack
of documentation on the subject
in the Delphi product, and the
overly complex demo application
supplied with Delphi.

This article has looked at a
number of issues to do with

docking and dis-
cussed a variety of
the properties,
methods and
events that can be
used to build docking support into
your programs in a variety of ways.

Whilst researching the content
of this article I have found numer-
ous errors in the help, and also
many issues which are either
undocumented, or unhelpful. For
example, I had fully implemented a
custom dock object to mimic the
IDE toolbar behaviour (no dock
image, just immediate undocking)
before bumping, completely by
chance, into the TToolDockObject
in the ToolWin unit which does
the same thing. Whilst this class is
indeed documented, there is no
reference to it in either the
TToolBar or TControlBar help
pages.

➤ Figure 11:
A custom dock
manager in
action.

Every issue I have found has
been reported to Borland, and so
far I have been informed that most
of the reports will be acted upon
for Delphi 6.

Brian Long is a freelance trainer
and problem-solver specialising in
Delphi and C++Builder work. Visit
his website at www.blong.com or
email him on brian@blong.com

	Simple Undocking
	Simple Docking
	Permission To Dock
	Control Bars And Docking
	Closing Undocked Controls
	Programmatic Docking
	Manufacturing Dock Zones
	Custom Docking/Undocking
	More Customisation
	Floating Forms
	Multiple Docked Clients
	The Dock Manager
	More Docking Subjects
	Summary

